Homeomorphisms of the torus, Introduction (definition of the title)

23 Sep

Besides understanding the proof of the fundamental theorem of geometric group theory, figuring out how to classify the homeomorphisms of the torus is one of the first exercises grad students in my field do.  It involves lots of matrix multiplication and remembering some facts from linear algebra, which we’ll sorta brush over (mostly because I don’t remember anything from my linear algebra class besides that Stephen Goode always said bee-ta and once told us that if we left his class saying bee-ta then we’ll have learned something.  I’d never heard it before so I had no idea what he was talking about until a few years later when I said bee-ta and everyone was like uh you’re not European/Australian… Long story short, Americans say bay-ta for \beta).

So.. what’s a homeomorphism of the torus?  Well we know what the torus is: a donut!  Mmmm donuts.  But sometime’s it’s hard to do math on a three-dimensional donut (it’s easy to forget where things connect up on the backside) so we often unfold the torus into a square and draw things on the square instead of on the torus.  We’ve seen this picture before:



And the idea is that it describes the torus.  You glue the red edges together so the arrows line up, and you have a cylinder.  Then glue the blue edges (which are now the ends of the cylinder) together so the arrows line up, and you have a torus.  Here’s a cartoon:

And here’s some pictures of me doing this in real life:


First line up the green arrows, then the blue arrows

I'm a torus!

I’m a torus!

Visualizing abstractions is one of the hardest skills in math (I think so anyway) but once you’ve started it, it’s difficult to remember that people don’t look at flat squares and see donuts right away.  So hopefully this helped you!

Why would we rather use a torus drawn as a square rather than using a 3D model?  Well, for one, it’s way easier to draw a square than a torus.  But it’s also much easier to mathify things we’re interested in on a square than on a torus: for instance, I can draw a curve on my torus…

Taken from George Hart’s brilliant bagel page: the string shows part of the curve, and the dotted lines show where the string continues on the back side.

Or I can use math to describe it.  Notice that the string goes through the hole 3 times (easy to see) and around the hole twice (a little harder to see).  So it goes around the skinny side (the longitude) three times and around the flatter side (the latitude) two times.  Let’s name this the (3,2)-torus knot.  Just like with the curve complex, we don’t care if we wiggle the string a little bit (isotopy).

There’s another cool thing we can do with a square: tile the plane!


Every square is the torus that we had before

I know it doesn’t seem that cool but it is!  If I identify every single square with the torus I had before, I can actually draw the (3,2) curve.  Here it is drawn on just one square, and then drawn on the big grid:

Left: follow the numbers to see the knot.  Right: look at the bottom-most green line.

Left: follow the numbers to see the knot. Right: look at the bottom-most green line.

It might take a little while to understand this picture.  On the left, start in the lower left corner.  Follow strand 1 and you hit a point about 1/3 the way down the right side.  Since the blue arrows are identified, this is the same as the point about 1/3 the way down the left side, which means we go to strand 2.  Similarly, the middle of the top and middle of the bottom are identified, so we get to strand 3, and finally strand 4 finishes the loop.

Instead of doing that tracing, we could draw the (3,2)-knot on the tiled plane, so that it goes over 3 times and up 2 times.  So we can see this loop as a line with slope 2/3 in the plane, which is way easier to draw than the picture on the left.  I added in all the lines on the right to show how the left and right pictures are related.

To summarize so far: a torus is a donut, and we can think of it as embedded in real space (an actual donut) or more abstractly as a square with the sides identified.  The plus of the flat picture is that it’s easier to draw, and it can tile the plane, which led to us associating loops of the torus with lines of fractional slope in the plane, just like our bagel loop was the line with slope 2/3.

OK, onto the homeomorphisms part.  A morphism is a map f: X\to Y that assigns points in $X$ to points in $Y$.  For instance, the yellow pages describe a morphism from X=People to Y=Addresses.  Yes, I did just refer to the yellow pages.  No, I don’t know if they still exist.  Deal with it.

A homeomorphism, then, is a special kind of morphism.  It goes from one topological object back to itself, so Y=X, and it has an inverse.  In our example, there’s no inverse because if I give you an address, you might give me five people back, while if you give me a person, I’ll give you just one person back.  To have an inverse, your map has to be one-to-one, which means exactly what it sounds like: each person in X gets exactly one address in Y.

There’s one more property that homeomorphisms have to have: continuity.  Roughly, continuity says that if you wiggle around a little bit in $X$, then you only wiggle a little bit in $Y$.  The yellow pages map is super not-continuous, because if you go to your alphabetical neighbor in $X$ you might have to cross all of town in $Y$ to find his address.  This graph is an example of a function which is continuous:

Puppy Growth Chart

THIS CHART TELLS YOU HOW BIG YOUR PUPPY IS GONNA GET http://goldendoodles.com/care/growth_chart.htm

The topic of this series of posts will be homeomorphisms of the torus: invertible, continuous maps from the donut to itself.  Next time we’ll talk about matrices (ooh goody) and how they have to do with these homeomorphisms, and then eventually we’ll classify all homeomorphisms by what kind of matrix they are.



9 Responses to “Homeomorphisms of the torus, Introduction (definition of the title)”

  1. Geophid October 8, 2015 at 11:38 pm #

    Hi. I was searching for second-order knots and mathematics and your site came up (specifically the post about baklava) . I make art using knots. I also cook. I know a bit about calculus and linear algebra and but almost nothing about topology and algorithms and the rest. Your site might be an epiphany for me… food, the gateway through which all understanding arises! Thank you!


  1. Homeomorphisms of the torus, part II (matrices and linear algebra) | Baking and Math - October 12, 2013

    […] we know what a torus is, and what a homeomorphism is, from our first post in this series.  Hopefully you remember this picture, which demonstrates how we can tile the plane using the unfolded […]

  2. Homeomorphisms of the torus, part IV (topology of the identity component) | Baking and Math - December 30, 2013

    […] See Part I for a definition of homeomorphism and torus and Part II for a bit more linear algebra.   […]

  3. An open problem in group theory | Baking and Math - February 25, 2014

    […] may remember that I once did a series of posts 1, 2, 4, on the homeomorphisms of the torus.  You don’t need to read all the posts to get this […]

  4. Kissing numbers, current research in hyperbolic surfaces | Baking and Math - March 30, 2015

    […] hyperbolic, because it has no holes and no cusps, so you get 2 which is not smaller than 0.  And a torus isn’t hyperbolic, because it only has one hole, so you get 2-1=1.  But all the surfaces in […]

  5. What is the fundamental group? | Baking and Math - May 29, 2015

    […] say that’s the one, that’s the special one I want.  Then our group elements with be isotopy classes of loops (this means you can wiggle loops to be the same, as in the red ones below) that go […]

  6. Best talk I’ve seen: Left orderable groups. Also, ask me about grad school! | Baking and Math - July 30, 2015

    […] an interesting example of a left orderable group: the group of (orientation-preserving) homeomorphisms on the real numbers. (Orientation preserving means that a<b means that f(a)<f(b), all in the […]

  7. What is a covering space? | Baking and Math - November 14, 2015

    […] point in Y has a neighborhood N whose preimage in X is a collection of disjoint sets which are homeomorphic to […]

  8. Current research: lifting geodesics to embedded loops (and quantification) | Baking and Math - November 19, 2015

    […] all the rest of the word’s in Priyam’s theorem *(hyperbolic structure is a hyperbolic metric).  The important thing to take from it is that she bounds the degree of the cover above by a constant […]

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: